Lecture (4c) Internal Combustion Engine

ENGINE PERFORMANCE

12/4/2016

Performance Factors Of ICEs

The performance of an engine is evaluated on the basis of the following :

- Specific Fuel Consumption.
- **Brake Mean Effective Pressure.**
- Specific Power Output.
- Specific Weight.
- Exhaust Smoke and Other Emissions.

For an engine wit	h:	
Diameter (bore)	D	т
stroke length	L	m
an engine speed	N	rpm
No. of cylinder	n	
No. of revolution f	for one cy	cle x
	<i>x=2</i>	for 4-strok engine
	<i>x=1</i>	for 2-strok engine

Air-Fuel Ratio:-

□ For combustion to take place, the proper ratio of air and fuel must be present in the cylinder.

□ The air-fuel ratio is defined as

$$AF = \frac{m_a}{m_f} = \frac{\dot{m}_a}{\dot{m}_f} \Longrightarrow \frac{\mathrm{kg}_a}{\mathrm{kg}_f}$$

□ For a SI engine the AF is in the range of 12 to 18 depending on the operating conditions.

□ For a CI engine, where the mixture is highly non-homogeneous and the AF is in the range of 18 to 70.

□ It is the ideal (Chemically Correct) A/F ratio that just burns all the fuel.

Natural gas: 17.2 Ethanol: 9 Diesel: 14.6

Gasoline: 14.7 Methanol: 6.4 Propane: 15.5 Hydrogen: 34

12/4/2016

Equivalence Ratio:-

$\phi = \frac{\left(F \right)}{\left(F \right)}$	A actual chemically correct
$\phi = 1$	Chemically correct mixture
$\phi > 1$	Rich mixture
$\phi < 1$	Lean mixture

Calorific Value (CV):-

□ The amount of heat liberated by the combustion of a unit weight (or if a gas, a unit volume) of fuel.

Fuel	CV	Units
Gasoline	48000	kJ/kg
Diesel	45000	kJ/kg
Natural gas	43000	kJ/m ³

Fuel Power:-

□ Fuel power is the thermal power released by burning fuel inside the engine.

 $\dot{Q}_{Fuel} = Massburnedof fuelper second × Calorific value of fuel$ $<math>\dot{Q}_{Fuel} = \dot{m}_{Fuel} \times CV$

Units:
$$\frac{kg}{s} \times \frac{kJ}{kg} = \frac{kJ}{s} = kW$$

12/4/2016

Power:-

The main purpose of running an engine is to obtain mechanical power.

Brake power (b.p.):

The power developed by an engine and measured at the output shaft.

B.P. =
$$\omega \times T = \frac{2\Pi N}{60} \times T \Rightarrow \text{units} : \left(\frac{rad}{rev}\right) \left(\frac{rev}{s}\right) (J) = Watt$$

Where:

T	is torque	N-m or J
ω	is the shaft angular velocity	rad/s
N	is the rotational speed	revolutions per minute.

□ Torque is measured using a **dynamometer**.

The **torque** exerted by the engine is **T**:

 $T = F \cdot b$ units : J

> Indicated power (i.p.):

It is the actual rate of work done by the working fluid on the piston.

> Friction power (f.p.):

The difference between the i.p. and the b.p and it is the power required to overcome the frictional resistance of the engine parts.

$$F.P. = I.P. - B.P.$$

mean effective pressure:-

Mean effective pressure is defined as a hypothetical/average pressure which is assumed to be acting on the piston throughout the power stroke.

$$mep = \frac{W_{net}}{V_d} = \frac{W_{net}}{V_{Total} - V_{Clearance}} \Longrightarrow Pa$$

mep is a better parameter than torque to compare engines for design and output because it is independent of engine speed, N, and engine size, V_d .

12/4/2016

ENGINE PERFORMANCE

Indicated mean effective pressure (imep):

It is a hypothetical pressure which if acting on the engine piston during the working stroke would results in the indicated work of the engine.

> Brake mean effective pressure (bmep):

It is the mean effective pressure acting on the pistons which would give the measured b.p.

$$bmep = \frac{W_{break}}{\frac{\Pi}{\Delta}D^2L}$$

12/4/2016

Fraction mean effective pressure (fmep):

fmep = imep - bmep

<u>Note:-</u>

The maximum bmep is obtained at WOT at a particular engine speed.
Closing the throttle decreases the bmep.
For a given <u>displacement</u>, a higher maximum bmep means more torque.
For a given <u>torque</u>, a higher maximum bmep means smaller engine.
Higher maximum bmep means higher stresses and temperatures in the engine hence shorter engine life, or bulkier engine.
For the same bmep 2-strokes have almost twice the power of 4-stroke

> The power can also calculated by:-

Indicated Power

Break Power

$$I.P. = imep \times \frac{\Pi}{4} D^2 L \times \frac{N}{60} \times \frac{n}{x} \qquad B.P. = bmep \times \frac{\Pi}{4} D^2 L \times \frac{N}{60} \times \frac{n}{x}$$

> The mean effective pressure can also calculated by:-

Indicated mean effective pres

$$imep = \frac{I.P.}{\frac{\prod}{4} D^2 L \times \frac{N}{60} \times \frac{n}{x}}$$

Break mean effective pressure

$$bmep = \frac{B.P.}{\frac{\Pi}{4}D^2L \times \frac{N}{60} \times \frac{n}{x}}$$

12/4/2016

Specific fuel consumption (s.f.c.):

It is the mass of fuel consumed per unit power output per hour, and is a criterion of economic power production.

$$sfc = \frac{m_f}{Power}$$
 kg/kW.h

Brake Specific fuel consumption

bsfc =
$$\frac{m_f}{B.P.}$$

Indicated Specific fuel consumption

$$isfc = \frac{m_f}{I.P}$$

<u>Note:-</u>

$bsfc \cong 0.270 \text{ (Kg/kW.h)}$ for SIE $bsfc \cong 0.200 \text{ (Kg/kW.h)}$ for CIE

Specific Power Output:-

Specific power output of an engine is defined as the brake power (output) per unit of piston displacement.

Specific Power Output =
$$\frac{B.P.}{V_d} = \frac{B.P.}{A_{piston} \times L_{strok}} = \frac{B.P.}{\frac{\pi}{4}D^2L} [\frac{kW}{m^3}]$$

Volumetric efficiency (η_v) :

the ratio of the volume if air induced, measured at the free air conditions, to the swept volume of the cylinder

$$\eta_{v} = \frac{m_{a}^{\cdot})_{act}}{m_{a}^{\cdot})_{the}} = \frac{m_{a}^{\cdot})_{act}}{\rho_{a} \times V_{d}^{\cdot}} = \frac{m_{a}^{\cdot})_{act}}{\frac{P_{1}}{R.T_{1}} \times \frac{\Pi}{4} D^{2}L \times \frac{N}{60} \times \frac{n}{x}}$$

12/4/2016

Thermal efficiency:- $\eta_{\text{th}} = \frac{Power}{m_f^{\cdot} \times CV}.$

Brake Thermal efficiency

$$\eta_{b.\text{th}} = \frac{B.P}{m_f^{\cdot} \times CV.}$$

Indicated Thermal efficiency

$$\eta_{\text{i.th}} = \frac{I.P.}{m_f^{\cdot} \times CV.}$$

Mechanical efficiency (η_m) :

$$\eta_m = \frac{B.P.}{I.P.} = \frac{bmep}{imep} = \frac{isfc}{bsfc} = \frac{\eta_{b.th}}{\eta_{i.th}}$$

12/4/2016